Answers and Hints to Exercise Questions in "Solar System Dynamics"

(Last Updated: 1 September 2006)

Chapter 5

Q5.1 (a) For Io: a-c = 15.6km = $0.00856R_{Io}$. (b) For the Moon in its current orbit: a-c = 0.0658km = $0.0000379R_{Moon}$; this is undetectable. (c) For the Moon at 10 Earth radii: a-c = 14.4km = $0.00830R_{Moon}$; for the Earth with a 10 h rotation period and $h_2 = 1.94$: $\epsilon = 0.0192$ and $J_2 = 0.00619$. (d) Taking the spin period to be 58.65 days (see error listing) you should get $\epsilon = 1.3 \times 10^{-6}$; this corresponds to a-c = 0.003 km. (e) In this part you could use the mean density for Pluto given in Table A.4. For Pluto a-c = 1.3 km; for Charon a-c = 0.7 km.

Q5.2 (a) The total mass is 1.47×10^{22} kg giving a mean density of $\langle \rho \rangle = 2.08$ g cm⁻³. See Sect. 2.7 for a clue as to how to measure the individual masses and densities. (b) $\tau_{\rm P} \approx 7 \times 10^6$ y. (c) Note that for smaller bodies $k_2 \propto R^2$ and so $\tau_{\rm C}/\tau_{\rm P} \approx (R_{\rm C}/R_{\rm P})^4$ is more realistic. (d) The initial semi-major axis and orbital period would have been a = 14620 km and P = 4.103 d, respectively.

Q5.3 This is a fairly simple task using the outline in Sect. 5.3.

Q5.4 The critical eccentricity is $e_{\text{crit}} = 0.2793$.

Q5.5 Measuring along the $\dot{\theta}/n = 1$ line, the maximum variation is reduced from 180° to 76°.

Q5.6 For
$$p = -\frac{1}{2}$$
, $(\dot{\theta}/n)_{\text{max/min}} = -\frac{1}{2} \pm \sqrt{e^3/48}$. For $p = -1$, $(\dot{\theta}/n)_{\text{max/min}} = -1 \pm \sqrt{e^4/24}$. For fixed

e intersection of the "islands" of these resonances occurs for $\alpha = \frac{1}{2} \left\{ \sqrt{e^3/48} + \sqrt{e^4/24} \right\}^{-1}$. The equation for *e* as a function of α is transcendental in *e* and so has to be solved numerically. Based on the equation for α as a function of *e*, are the islands ever likely to intersect?